
Free and Open Source Tools for GPS Data Management and Analysis
Alex Mandel•Geography Graduate Group•University of California, Davis

Introduction

This poster highlights methods for dealing with large amounts of spatial
data generated from GPS tracking technology, specifically focusing on Free
and Open Source software. The advantages to using Free and Open Source
software are it is inexpensive (free), works on any operating system, uses open
data formats, and has a large and friendly community for help. Examples
below demonstrate how to use a combination of Spatialite1, Quantum
GIS (QGIS)4, R5 and Python3 for an inter-connected system of data
storage, visualization, analysis, and automation.

Data Import: Python

I started with 32 individual spreadsheets (one per animal) containing de-
scriptive information and more than 50,000 GPS collar point locations. Using
Python3 I copied only the relevant location data into an SQLite2 database and
created a Spaitialite1 geometry layer from the latitude and longitude. With
the data now in a spatial database, analysis and visualization are possible with
a few Structured Query Language (SQL) queries (Fig. 1).

Data Work-flow

Figure 1: Flowchart of Data Management and Analysis

Data Management: Spatialite

Below is a query that merges two separate date and time columns into a
single column. By putting the date and time into a single column the database
is now capable of calculating differences in time records over multiple days. The
new time-stamp format adheres to an international standard6 which should
make it easier to use in other applications.� �

1 --Create time -stamp from date and time columns .
2 ALTER TABLE locations
3 ADD COLUMN " timestamp " TEXT;
4

5 UPDATE locations SET " timestamp " = (
6 substr ("date" ,7,4) || ’-’ ||
7 substr ("date" ,1,2) || ’-’ ||
8 substr ("date" ,4,2) || ’T’ ||
9 "time");� �

Before After
Date Time Time-stamp

01/16/2002 12:15:48 2002-01-16T12:15:48

The following query checks for duplicate records based on their time-stamp (a
combined field of date and time).� �

1 --Check for duplicate data
2 SELECT DISTINCT (" timestamp "), count(point_id) as tot , group_concat (

point_id)
3 FROM locations
4 GROUP BY " timestamp ", puma
5 ORDER BY tot DESC;� �

Distance vs. Time: Spatialite

A query demonstrating how to calculate distance traveled between successive
GPS readings on the same individual for all pairs of points in the entire dataset:� �

1 --Calculate distance traveled per unit of time between GPS recordings
2 CREATE TABLE loc2 AS
3 SELECT (ROWID -1) as previous , point_id as p2 , timestamp as t2 ,

albers83 as end
4 FROM locations
5 WHERE point_id NOT
6 IN (SELECT point_id WHERE point_id LIKE ’% -0001% ’ OR point_id LIKE ’

% -001 ’);� �

Data Model

GPS point locations and a polygon based habitat model loaded as 2 layers in
the database allowing a join by location (Fig. 2).

GPS Locations
Effective Mesh Model

Unique ID

Effective Mesh Value

Polygon Geometry

Unique ID

Individual ID

Timestamp

Point Geometry

GPS Waypoint ID

Figure 2: Basic data model of the database.

Optimized Spatial Query: Spatialite

An optimized spatial query identifying which polygon each point location oc-
curred within:� �

1 --Create the ram cached spatial index of locations
2 SELECT CreateMbrCache (’locations ’,’albers83 ’);
3 --Optimized spatial query
4 CREATE TABLE locationsXfg3geom as
5 SELECT locations .puma as puma , locations . point_id as point_id ,
6 fg3geom . RBUASPW as UID
7 FROM locations , fg3geom
8 WHERE locations .rowid IN
9 (SELECT rowid

10 FROM cache_locations_albers83
11 WHERE mbr = FilterMbrWithin
12 (MbrMinX (fg3geom . Geometry), MbrMinY (fg3geom . Geometry),
13 MbrMaxX (fg3geom . Geometry), MbrMaxY (fg3geom . Geometry)))
14 AND Within (locations .albers83 , fg3geom . Geometry);� �

Data Analysis: R

Data from Spatialite1 can be used directly in R5 by opening a database con-
nection and retrieving the results of query for statistical analysis.� �

1 # Connect to database
2 library (RSQLite)
3 m <- dbDriver (" SQLite ")
4 con <- dbConnect (m, dbname = " puma080307test .db",loadable . extensions =

TRUE)
5 #Query only animals with n > 100, Join to results of intersection of

points with polygons with attributes from original point data
6 d3a <- dbGetQuery (con , ’SELECT resultsJfg3 .puma as pumaid , point_id ,

UID , EffMeshCBC FROM resultsJfg3 Join (SELECT DISTINCT puma , count(
puma) as total FROM locations GROUP BY puma) as number ON pumaid =
number .puma WHERE number .total > 100 ’)� �

Results

• Data can easily be normalized, joined, and summarized with SQL.
• Quick way to locate errors and anomalies in a dataset.
• Spatialite1 and spatial SQL are capable of typical vector analysis.
• Spatialite1 offers some unique speed optimization methods.

Visualization: Quantum GIS

Viewing GPS points overlaying habitat fragmentation model polygons (Fig. 3).

Figure 3: QGIS4 Visualization with Spatialite1 data loading dialog

Discussion

• Using a database makes management of large datasets less laborious.
• Spreadsheets are useful for some tasks, but prone to errors.
• Spatial SQL is a viable and efficient tool for modern GIS.
• Learning to mix Spatialite1, R5, QGIS4, and Python3 takes some time but
is not difficult.

References

[1] Alessandro Furieri. SpatiaLite Cookbook. 2011. url: http://www.gaia-gis.it/
spatialite-2.4.0-4/spatialite-cookbook.

[2] Dr. Richard Hipp. SQLite. 2011. url: http://www.sqlite.org.
[3] Python Software Foundation. Python Programming Language. 2011. url: http://

www.python.org.
[4] Quantum GIS Development Team. Quantum GIS Geographic Information System.

Open Source Geospatial Foundation. 2011. url: http://qgis.osgeo.org.
[5] R Development Core Team. R: A Language and Environment for Statistical Comput-

ing. ISBN 3-900051-07-0. R Foundation for Statistical Computing. Vienna, Austria 2010.
url: http://www.R-project.org.

[6] ISO International Organization for Standardization. ISO - International Organization
for Standardization. http://www.iso.org/iso/date_and_time_format. Text. 2011. url:
http://www.iso.org/iso/date_and_time_format.

Acknowledgements

Walter Boyce, Wildlife Health Center, UC Davis; Jim Thorne, Jim Quinn and Evan Grivetz,
Information Center for the Environment, UC Davis; Alessandro Furieri; the Quantum GIS
community; the R community; the Open Source Geospatial Foundation’s Python community

email: aimandel@ucdavis.edu

http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook
http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook
http://www.sqlite.org
http://www.python.org
http://www.python.org
http://qgis.osgeo.org
http://www.R-project.org
http://www.iso.org/iso/date_and_time_format

	References

